Block coordinate descent methods for semidefinite programming
نویسندگان
چکیده
منابع مشابه
An Efficient Inexact ABCD Method for Least Squares Semidefinite Programming
We consider least squares semidefinite programming (LSSDP) where the primal matrix variable must satisfy given linear equality and inequality constraints, and must also lie in the intersection of the cone of symmetric positive semidefinite matrices and a simple polyhedral set. We propose an inexact accelerated block coordinate descent (ABCD) method for solving LSSDP via its dual, which can be r...
متن کاملRandom Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks
In this paper we develop random block coordinate descent methods for minimizing large-scale linearly constrained convex problems over networks. Since coupled constraints appear in the problem, we devise an algorithm that updates in parallel at each iteration at least two random components of the solution, chosen according to a given probability distribution. Those computations can be performed ...
متن کاملPractical first order methods for large scale semidefinite programming
This paper investigates first order methods for solving large scale semidefinite programs. While interior point methods are (a) theoretically sound and (b) effective and robust in practice, they are only practical for small scale problems. As the dimension of the problem increases, both the space and time needed become prohibitive. We survey first order methods which have been proposed in the l...
متن کاملThe Mixing method: coordinate descent for low-rank semidefinite programming
In this paper, we propose a coordinate descent approach to low-rank structured semidefinite programming. The approach, which we call the Mixing method, is extremely simple to implement, has no free parameters, and typically attains an order of magnitude or better improvement in optimization performance over the current state of the art. We show that for certain problems, the method is strictly ...
متن کاملBCDNPKL: Scalable Non-Parametric Kernel Learning Using Block Coordinate Descent
Most existing approaches for non-parametric kernel learning (NPKL) suffer from expensive computation, which would limit their applications to large-scale problems. To address the scalability problem of NPKL, we propose a novel algorithm called BCDNPKL, which is very efficient and scalable. Superior to most existing approaches, BCDNPKL keeps away from semidefinite programming (SDP) and eigen-dec...
متن کامل